

Wir nehmen Politik, Wissenschaft und Wirtschaft mit auf den Weg in eine CO₂ freie Zukunft

Wasserstoff – der vielseitige Energieträger für die Versorgungsinfrastruktur von Morgen

Gewerbe / Industrie

O CO₂ neutrales Energiemanagement

Wohnungsgesellschaften

 Quartierslösungen mit grüner Wärme und grünem Strom

Netzbetreiber / Stadtwerke

Regelleistung und Puffer f
 Lastspitzen

Mobilität

 Wasserstoff als sauberer Treibstoff für die Zukunft

Wasserstoff als alternative Antriebsquelle im Schwerlastverkehr?

- Kriterien für die Auswahl des Antriebskonzeptes
 - Nutzlast
 - O Betankungszeit
 - Anschaffungs- und Betriebskosten
 - O Reichweite

BATTERIE

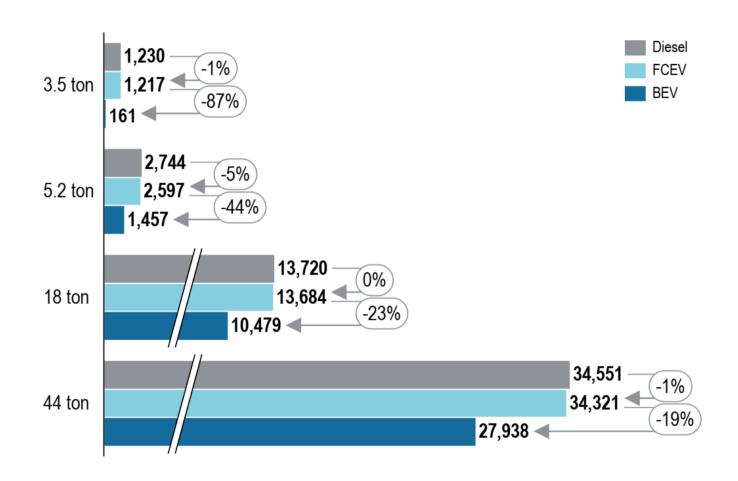
Ladeinfrastruktur vorhanden Besserer Wirkungsgrad Innovationspotential

VS.

BRENNSTOFFZELLE

Leichter als Batterien Höhere Reichweite Kürzere Ladezeiten

Am Beispiel eines E-LKW sieht man das Dilemma



Futuricum E-LKW auf Basis von Volvo Rehie FM (Nutzlast bis 11 t / Leistung 680 PS)

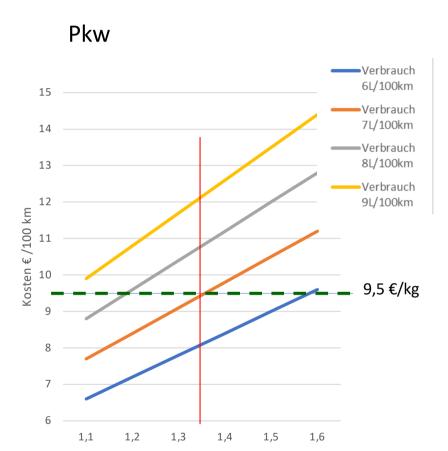
Batterie-Set	340	450	510	680	900
Installierte Kapazität	2 x 170 kWh = 340 kWh	2 x 225 kWh = 450 kWh	2 x 170 kWh und 2x 85 kWh = 510 kWh	4 x 170 kWh = 680 kWh	4 x 225 kWh = 900 kWh
Nutzbare Kapazität	289 kWh	383 kWh	434 kWh	578 kWh	765 kWh
Lademöglichkeiten	22 kW On-Board 44 kW On-Board (optional) 150 kW Off-Board mittels CCS Typ 2 (optional) Ab 450 Batterie-Set: 350 kW Off-Board mittels CCS Typ 2 (optional)				
Ladezeit mit Typ 2 AC 22kW (100% SoC)	14,6 Stunden	19,3 Stunden	21,9 Stunden	29,2 Stunden	38,6 Stunden
Ladezeit mit Typ 2 AC 44kW (100% SoC)	7,3 Stunden	9,7 Stunden	10,9 Stunden	14,6 Stunden	19,3 Stunden
Ladezeit mit CCS Typ 2 150kW (80% SoC)	1,5 Stunden	2 Stunden	2,3 Stunden	3,1 Stunden	4,1 Stunden
Ladezeit mit CCS Typ 2 350kW (80% SoC)		0,9 Stunden	1 Stunde	1,3 Stunden	1,7 Stunden
Reichweite*	200 km (geschätzt)	250 km (geschätzt)	300 km (geschätzt)	400 km (geschätzt)	500 km (geschatz
Gewicht Batterien	2°330 kg	2 720 kg	3 550 kg	4'660 kg	5'440 kg
Тур	Lithium-lonen (NMC)				

Nutzlastvergleich Batterie- und BZ-LKW vs. Diesel

Source: US Department Of Energy - Medium and Heavy Duty Fuel Cell Electric Truck Targets (2016), Roland Berger

Annahme: Reichweite 800 km

Kosten für BZ-LKW



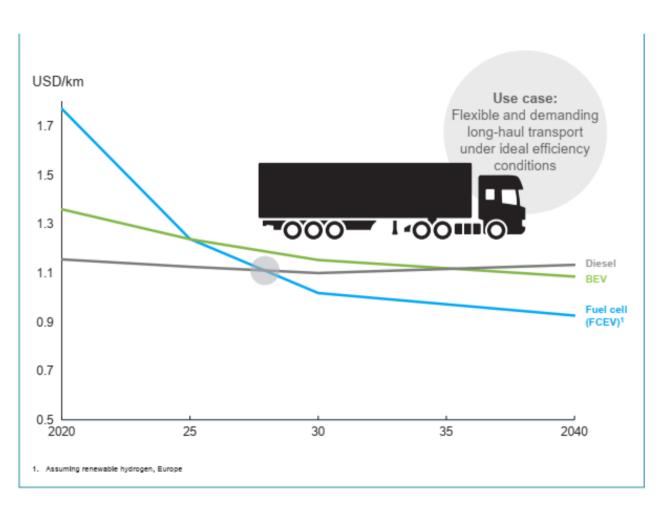
- <u>Anschaffungskosten</u> liegen bei ca. 500.000 EUR bei Serienfertigung werden diese deutlich fallen, aber dies ist noch nicht in Sicht. Mautbefreiung - bei 100.000 km Laufleistung entspricht dies 18.000 EUR
- <u>Betriebskosten</u> ein Kilo Wasserstoff an der Tankstelle kostet rund 9,50 Euro und ein mittelschwerer Verteiler-Lkw benötigt etwa 9 Kilogramm, um 100 Kilometer weit kommen zu können. Die Kraftstoffkosten summieren sich also in diesem Fall nach heutigem Stand auf rund 88,5 Euro pro 100 Kilometer. Zum Vergleich: Bei einem Verbrauch von 25 Litern Kraftstoff auf 100 Kilometern kommt ein Diesel-Lkw auf Spritkosten von rund 30 Euro. Allerdings gehen Marktkenner davon aus, dass der Preis für Wasserstoff noch um einiges sinken wird. Bei etwa 4 Euro pro Kilogramm lägen die Betriebskosten dann etwa gleichauf, da beim Diesel-Lkw noch die Kosten für Adblue hinzukämen und Wartungs- und Servicekosten höher ausfallen dürften.

.

Kraftstoffkostenparitäten

Annahme: 1 kg H2 /100 km @ 9,5 €/ kg Parität @7 L/100 km > 1,35 €/L Benz.

Annahme: 8 kg H2 /100 km


Parität @35 L/100 km u. 1,2 €/L: H2 < 5,3 €/kg

Quelle: Dr. Frank Koch EE ENERGY ENGINEERS GmbH

TÜV NORD GROUP

TCO Entwicklung LKW

Annahmen:

- Lebensdauer 10 Jahre
- 150.000 km/Jahr
- Reichweite 800 km
- H2 Preis 4 EUR/kg in 2030
- 70 % Kostenreduktion im
 Antrieb zw. 2020 und 2030

Quelle: Hydrogen Insight 2021, Hydrogen Council (McKinsey)

Die großen LKW-Hersteller streiten um die Frage nach dem "grünen Königsweg"...

TRATON

"Traton setzt klar auf den <u>Elektro-LKW"</u> sagt Vorstandschef Matthias Gründler

Daimler Truck AG

"Der <u>wasserstoffbasierte</u>
<u>Brennstoffzellenantrieb</u> wird im CO2-neutralen
LKW-Fernverkehr der Zukunft unverzichtbar
sein." erklärt Martin Daum, Chef von Daimler
Truck

...während Hyundai Fakten schafft und sich neue Hersteller in Position bringen

Esoro

- Auf MAN-Basis
- 400 km, 34 to
- bei Coop seit 11/2016

Hyundai Xcient

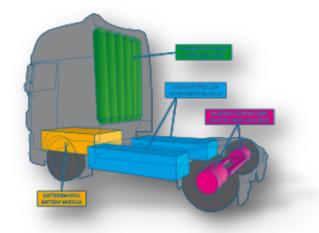
- 400 km, 190 kW BZ
- Kühltransporter
- 1.600 Fzge. ab 2020 in der Schweiz

Nikola / Iveco

- 750 1.200 km,
 240 kW BZ
- 8.000 Vorbestellungen

Scania

- 27 to Kühllaster
- 350 km, 35 kg H2
- 90 kW Bz
- 4 Stück für Asko


Quantron und Clean Logistics

Quantron Heavy

- Basis Iveco Stratos 44 to
- 700 km Reichweite
- Bz REX v. Freudenberg
- 110 kWh Batterie
- 340 kW E-Motor

Clean Logistics (Winsen/Luhe)

- Umrüstung einer 40 to Sattelzugmaschine auf Bz
- 400-500 km
- 45 kg H2

Daimler GEN H2 Truck

Konzeptpräsentation 16.9.20 Test beim Kunden 2023 Markteinführung 2025

Fotos: Daimler Trucks and Buses

LKW 40 to

- Basis e-Actros
- 2x150 kW Bz (Koop. mit Volvo)
- 2 x 40 kg LH2, alt. GH2
- 70 kWh Hochvoltbatterie
- Bis 1000 km Reichweite
- Nutzlast 25 to

HYZON HyMax 450

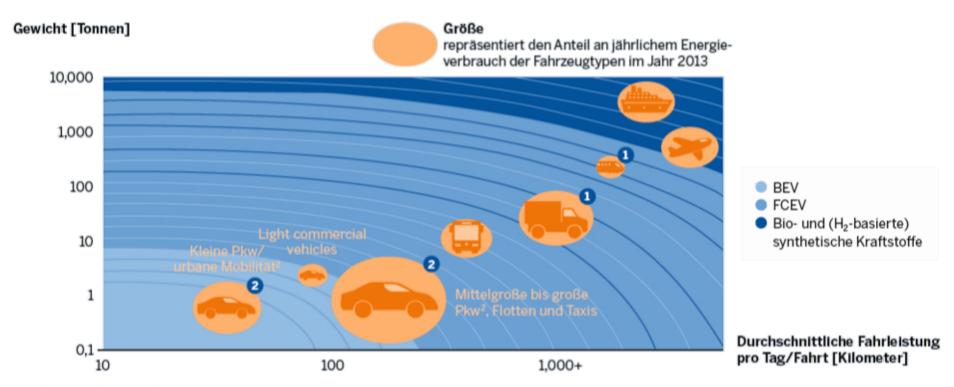
Foto: Hyzon

LKW 40 to

- Basis DAF
- 80 kW Bz (Hyzon 80 F) + X x 20 kW als Option
- 140 kWh Hochvoltbatterie
- 450 kW Antriebsleistung
- 30 kg GH2 @ 350 bar
- Reichweite 400-600 km
- Preis ab 500.000 €
- Kauf, Leasing, pay-per-use Modelle

Markteinführung Ende 2021

"Hyzon Motors erhält Auftrag für bis zu 70 Schwerlast-Lkw aus Österreich" (3.6.21) "Hyzon Motors erhält 20 Bestellungen aus den Niederlanden" (31.5.21)

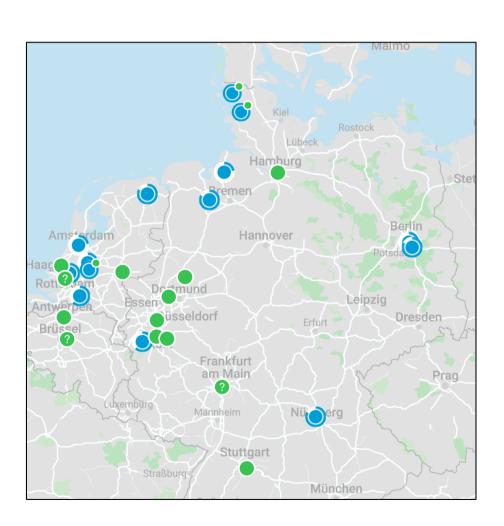

"Hyzon erhält Auftrag über 1.500 BZ-Lkw aus Neuseeland" (18.2.21)

Quelle: electrive.net

Wahl der Antriebsart nach Gewicht und Reichweite (höhere Energiedichte für lange Strecken)

Antriebsportfolio für die Mobilität der Zukunft

Batterie-Brennstoffzellen Hybrid f
ür ausreichende Leistung


Quelle: Hydrogen Council

² Aufteilung in A- und B-Segment LDVs (kleiner Pkw) und C+ Segment LDVs (mittelgroßer bis großer Pkw) basierend auf einem Marktanteil von 30 % A/B-Segment Pkw und 50 % geringerem Energiebedarf

Das Henne / Ei – Problem Wie weit ist die H₂ Infrastruktur?

- H2 Mobility ist für den Ausbau des Tankstellennetzes verantwortlich
- Lediglich 9 LKW taugliche Tankstellen werden heute in Deutschland ausgewiesen
- Bis Ende des Jahrzehnts müssen in Europa gut tausend Spezialtankstellen aufgebaut werden.
- In MV haben wir bei APEX in Rostock-Laage eine Betankungsmöglichkeit

Ausblick

- O RAHMENBEDINGUNGEN VERSTEHEN
- FÖRDERMÖGLICHKEITEN NUTZEN
- INDIVIDUELLE PROFILE ERSTELLEN
 - O Ihr Geschäft bestimmt die Adaptionsgeschwindigkeit.
- KRÄFTE BÜNDELN / SYNERGIEN ERZEUGEN
 - Bedarfe sollten zusammengelegt werden, speziell für den Infrastrukturausbau.
 Expertenaustausch für Antragstellung, Wirtschaftlichkeitsberechnung, Technikbewertung, Einkauf...
- O PILOTSTRECKEN DEFINIEREN / H2 HUBS AUFBAUEN

Dr. Mischa Paterna

Geschäftsführer Wasserstoffenergiecluster MV

Tel: 0381 / 799902-208

Mail: mischa.paterna@wecmv.de

Lassen Sie uns <u>jetzt</u> über Ihre Anforderungen sprechen und Ihr Unternehmen gemeinsam <u>für die</u> <u>Zukunft</u> optimal aufstellen!

